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Full Multimodal Analysis of an Open
Rectangular Groove Waveguide

Mark Fernyhough and David V. Evans

Abstract—n this paper, a full multimodal analysis of an open ¥
rectangular-shaped groove waveguide is presented for both TE
and TM modes. The method of solution involves the formulation
of the problem in terms of an integral-equation representation
to which a Galerkin approximation, which incorporates the —_— _—
anticipated singularities at the edges of the guide, is then applied. "L 1 S @ .
The method proves to be extremely accurate and numerically
efficient to compute, and results are presented for both the lower |
and higher order modes. :

Index Terms—Groove guide, microwaves, multimodal.
Fig. 1. Cross section of groove guide.

I. INTRODUCTION

HE GROOVE waveguide was first considered by Tisch?r . .
ransverse equivalent network formulation for the rectangular

[1] for use at milimeter wavelengths as an alternativeroove uide were able to provide a simple dispersion relation
to classical waveguides such as the H-guide and the re%tr— thegro erties of the gominant moge Ev?en though the
angular guide. It has many advantages such as low-loss IP\’gults grepa roximate (the susce tancé is assumegd to be
dimensional tolerance and the ability to handle higher powee% PP . . Pt .

o ) . . constant) the dispersion relation was in an extremely simple
capacities at high frequencies. Most of these properties ?re .
. . . orm, and when compared to experimental data produced much
attributed to the open endedness of the guide, which reduces .
msjre accurate results than previous methods. Mahmoud [7],

wall losses. The grooves in the guide trap the fields locally al employed an approximate mode-matching scheme to the
prevent radiation leaking out along the open parts of the gui roblem, which used the full solution in the groove region, but

Many authors have studied the groove guide both expepl-

. g . only a simple modal expression for the open-ended region.
mentally and analytically. Conformal mapping techniques haY—F : . : ) .

. .He was able to manipulate the resulting dispersion relation
been used by Tischer [1], Bava and Perona [2], and (éltl0|.m0 a form analogous to that of Oliner and Lampariello in
al. [3]. The mapping of the region enclosed by the groov:/(\a/hich the value ng] tlkJ1e susce tancelwas de endepnt Iu onI the
guide into the region between two parallel planes results in"a P P P

Helmholtz equation with the space-varying wavenumber c eometry of the guide and was not constant, as assumed by

. . ; X . . liner and Lampariello. The most accurate solutions to date
responding to an anisotropic medium for which approximate . . .

are by Sachidananda [9] who analyzed the groove guide using

methods need to be employed. Thus, Bava and Perona Chgseode-match'n techniaue emploving three domains in place

the shape of the groove to make analysis easier, from whic Ny qu ploying Ins n p

approximate values of the cutoff wavelengths were obtain dthe two domains used conventionally. The method, which

using a stationary expression for the cutoff wavenumber. 'R accurate to about two or three places of accuracy after

different approach was used for the rectangular groove guiteréncat'on of the resulting infinite system of equations, only

by Nakahara and Kurauchi [4], [5] who presented both theoapﬁphes to the dominant TE mode. Other important work in

and experimental results. They were able to obtain first-or arjnzrs?:iit;s[(ljllj]e EZ']VI&:;] Ti(r)r]]afr:]ga,cirrﬁi;(:r [alrob]i’trzrr]d ergo?/gd
results by using only the dominant mode in each region ' ' » they y 9

of the groove to produce a dispersion equation. Althou rofiles, and in [11] and [12], leaky-wave characteristics are

: : . . tudied due to the insertion of a strip into the rectangular
their analysis was approximate, the results obtained gave

fair agreement with their carefully measured experimentgfOove waveguide.

results. Subsequently, Oliner and Lampariello [6] using a newIn this paper, we present thg full multimodal solutions for
the rectangular groove waveguide, where we allow more than

one wave-like mode trapped locally around the groove region.
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In Section Il, the problem is formulated in terms of aror the TM solution or for the TE solution
integral equation, and instead of seeking an exact solution, a ,
Galerkin approximation is used in which expansion functions B = —ipowV X &, H=V XV x&, (6)
are chosen to model the behavior at the end points of theHere, ;1o and ¢, are the permeability and permittivity,
integral corresponding to the edges of the rectangular grooygspectively, of free space. Note from Fig. 1 that the geometry
and also chosen to provide maximum simplification of thgas two lines of symmetry, namely at= 0 andy = 0, so
results. The same method has been employed in simi{gé only need to consider the quadrant> 0,y > 0 with
problems (e.g., [13], [14]). Although the method of solutiofhe appropriate symmetry conditions at= 0 andy = 0.
at first glance appears to be mathematically complex, the firdr both the TE and TM modes there exists symmetric and
form is simple and the problem is reduced to finding zeros ghtisymmetric solutions about = 0, but for the symmetry
a determinant corresponding to values of the cutoff frequen@hbouty = 0 there is only an antisymmetric set of TE modes
The method turns out to be extremely efficient with no morgatisfying (4) (the symmetric aboyt = 0 set of TE modes
than five expansion functions needed to give results to at |eaﬁ/ﬁ/ays have traveling wave solutionszas- +oc) while both
six-figure accuracy. In fact, as we increase the number §fmmetric and antisymmetric solutions exist abgut 0 for
expansion functions, the results converge extremely rapidithe TM modes. Thus, in total there exists six sets of solutions
In Section Ill, results are presented showing the convep this problem.
gence of the ratio of free-space wavelength to guide wave-We now split the region into two (see Fig. 1). Region (1) is
length compared with Sachidananda’s [9] three domain modgfined byd < y < h;,0 < z < a while region (2) is given by
matching solution. Oliner’s [6] transverse equivalent network < < h,, 2 > a. The general form of solutions in regions

and Nakahara and Kurauchi's [4], [9] first-order theory andl) and (2) for the TE modes antisymmetric abgut 0 are
experiments are also compared. Results are also presented for ~ 1

various TE- and TM-mode solutions including geometries of 1 _ n X(a?,Pln)z/)h’a(y) )

In

the groove guide where multiple cutoff frequencies exist, and 4 = P
an approximation for arbitrarily shaped groove guides (derived q
in the Appendix) is used for comparison when the grom?en -
width is small. @) N L
no = _nzz:l Ee ( )z/}2n (y) (8)

[I. FORMULATION AND SOLUTION o i )
_ ) i _ Similarly, for the antisymmetric TM modes about= 0, the
Cartesian coordinates are chosen and the dimensions Ofé@ﬁeral solutions in regions (1) and (2) are

groove guide are illustrated in Fig. 1, with theaxis measured
into the page. We assume that the solutions of Maxwell's 40 — i UT(LI)
equations are time-harmonic with angular frequencynd €T

that the motion in thez-direction along the groove guide is S
periodic with wavenumbes. We seek solutions for the electric ¢(2) __ Z Uy e~ Qan (J:—a)z/};,a(y) (10)
and magnetic Hertzian potentials (corresponding to TM and ‘ "
TE solutions, respectively). In an obvious notation, we Writea

X(xv an)”(/)f;?(y) (9)

ne=1 in

nel 2n

nd for the TM modes symmetric aboyt= 0

dse,h = dzd)e,h(xv y)(i_i’az (1) =) (1)
(1) _ n e,s
where, within the interior of the waveguidg, ;,(x, ) satisfies ¢ = nz_:l P, xX(@, Pra)t (v) (11)
o2 o2 5 < U
<@ + a_yQ + kc)¢e,h($v y)=0 (@) (/)22) == Z PZ C_Pzn(m_a)?/);hs(y)- (12)
n=1 n
and on the walls of the waveguide L )
¢ Here,U,(n), U,(n) are as yet unknown and we have defined
b =0 2=y, (3) coshtz
an
: : : inh¢ symmetric
Also, we require that the guided waves are contained locally ~ x(,t) = :I?h tZ for {anti)isymmetric} (13)
around the recessive groove in the waveguide and, thus, coshita
require thatg. ;, satisfy the radiation condition _ coshta _
’ solutions about: = 0, where we assumgis a constant, thus
pep — 0 as|z| — oo, (4) o _, s
Here,a. is the unit vector in the-direction andk? = k3 — 52 de|,_,
is the cutoff wavenumber wittkg = w/cy the free—.space The eigenfunctions are defined for= 1,2,n = 1,2, -- -, by
wavenumber and:;, the speed of light. The electric- and
magnetic-field vectors can be related to either the electric or z/;i’;’“ =/2sinpiny
magnetic Hertzian potentials (see [15]) by Po° =/2sin gy

E=VxVx® H=iweV x®, (5) P& =208 piny (15)

in
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where fori = 1,2,n = 1,2,--- k. > p11 = w/2hy for a guided wave solution. Nows, is in
1 the ranger /2h; < k. < w/2hs, so depending orky/hy it is
mw nmw . . .
Pin = <n — 5) 7 Gin = ™ (16) possible to have more than one wave-like mode in the groove
‘ ‘ region where a particuldr, satisfieg v < k. <p1 nv41, NV =
and (15) are orthogonal in the sense that 1,2,---,M, whereM = [k.hi/7 + 1/2]. Here,[z] denotes
1 the integer part ofr. Thus, we can writeP,, = —ia, =
o Dim (Vi (W) dy = 6. 7)) —i(k?-p2)Y%,n=1,2,---, M and (22) can be written as
i Jo
ho
Finally, for: = 1,2,n = 1,2,--- / U)K ZVM/}’W (24)
Pu= ()" Qu= (-  (18) "
where form = 1,2,..- M
Returning to (8), (10), (12), (16), and (18) we see that in order . ;
- a, —1Q1m 2 o
for (A_f) to be satlsfleql we chooge < 7/ 2hs fqr the antisym _ = X(/ 1m) / U(y) }{T,n (y) dy (25)
metric TE mode while for the antisymmetric and symmetric 11y 0

TM modesk. <« /hy and k. < w/2ho, respectively.
We will only consider the analysis for antisymmetric TE
solutions, as the method is similar for the TM solutions for Z X a,Pry) ha( ) h,a(t)

which changes will be outlined later. L M+1 “Piahy M Y1
The general solutions for regions (1) and (2) need to be
matched at their common bou.ndaaty: a. Continuity of + Z P Z/)ha ha( t). (26)
O¢y/0x atz = a,0 < y < hy gives 2n
A _ i e Let us now definew,(y) to satisfy
a:]j r=a

/hz U’n(t)K(yv ) Z/}ha( ) 71:1,2,---,M (27)
0

UDY5 ),y €[0h]
= { nZl (19) where, from (24) and (25), we see that
0, y € [ha, ]
whereU(y) has been introduced. Using the orthogonality of Vi, = iot Lzlm ZV Smn m=12-- M
Plaa(y) from (17) we find tm
(28)
U(Z) = _/ h a dy7 1= 17 2 (20) where
ho
where we have used the fact tHéty) = 0,y € [0, hs). Spnn = / U ()15 () dy, mon=1,2-, M.
Continuity of ¢y, for z = a,y € [0, hp] now requires 0 -
U(l) ; U(2) } (29)
Z (a, Pro)hiy (y) + Z  (¥)=0. (21) Itis convenient to write (28) in the matrix form
AV =85 30
Substituting (20) into (21) we find 4 v (30)
by where forn = 1,.--, M
[ v et atie jasahy
Prohy A= diag{ i } V={V.}. (31)
X(av _Zaln)

+ Z B h h “( ph ot (t )} dt =0. (22) Then the condition corresponding to a guided wave is that (30)
has a nontrivial solution or in the matrix form

Let us now multiply (22) byU(y) and integrate ovefo, /5] det (S — A) = 0. (32)
to obtain
We now write (27) and (29) in an obvious operator notation

2
Xapln h,a
Z Piohy </0 Uiy (v) d ) K, = 1%, n=12- M (33)

12 2 and
oY o ([ vewm) <o e ,
el P2nh2 0 (umawba) :Smna m,n= 1727"'7M- (34)

We see from (23) that ifP;, is real and positive (i.e., Now S,,, = (un,z/;{:,‘i) = (tn, Ktem) = (tm, Ktin) = Snn,

k.<p11) then the kernel of (22) is positive definite andsince K(y,t) = K(¢,y), s0S — A is a symmetricM x M
thus, the only solution id/(y) = 0. We, therefore, require matrix. Rather than solve (33) and (34) directly, we seek an
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approximationu,, & i, SUCh that(tim, Kin) = (im,¥2*) whereC¥ (y) are ultraspherical Gegenbauer polynomials sat-

where the approximation t&,,, IS Sm. = (am,wf;f). isfying
Due to the positive definiteness &f it is possible to show 1
that the approximation provides lower bounds 8., i.e., / C3,,(t) cos zt dt =n U'(2m + 2v) Jom 40 (2) (42)
S < S as in, for example, [13] and [14]. o (1—t2)A/H-v (=1)m(2m)!I(v)(22)"
The procedure for solution now follows. We know tHat LCY o (t)sinzt F2m+2v+ 1) Jomapy1(2)
is in the rangern/2h; < k. <w/2hy with the possibility of /0 (1—t2)A/D-v d (=1)m(2m+ 1)IC(v)(22)”
M modes, which is dependent dn /h,. Thus, for a fixed (43)

geometry we can determine the range /f and also the

number of modes associated at a particular valué.ofFor See, for example, [16, p. 38]. Note that this choice of polyno-
example. we can show that = 1 for 1<h;/he < 3 and mial has a rather curious combination of factors in (41), but as
thus, (32) reduces to solving we will see later [(44), (45)] is solely to achieve simplification
of the final results.

i h
S=5u=4= # (35) It follows that
x(a, —ioq1)
Note from (13) that the right-hand side of (35) becomesFT(rle _ (z/}{;a’bm) _ JQm—(é/G)(f’izh?)’ i=1,2. (44)
a11hy tan agya or —ap1 by cot g a corresponding to the sym- (pinh2)Y/

metric and antisymmetric solutions abaut= 0, respectively.
Note that depending om/h; or a/hy and because of the
periodic nature ofan andcot we can have multiple solutions P i x(a, P1y)

Thus

of k. to (32) or (35). P by
We must first solve (27) or (33) and then determiig,, r=M+1
from (29) or (34). We use an accurate Galerkin approximation . Jam—(5/6)(P1rh2) J2n—(5/6) (P1rh2)
which has proved successful in related problems [13], [14]. We (p1rh2)t/3
begin by expanding., in a set of functions,.(y) such that N i L Jom—(s/6)(D2rh2) Jon—(5/6) (P2rh2)

R = Prrhsy (parh2)t/® '
and substitute in (27), multiply by,,(y) and integrate over Note that it is not necessary to solve for #hg. In an obvious
[0, ho], to obtain forn = 1,2,---,M,m = 1,2,--- R matrix notation, we have from (37)

R Kot = FW® 46
Z aanrnr = F,(,ir)L (37) ( )
r=1 and
where
aFV =8 (47)

Krnn = (’Cbnv brn)

oo oo where
=y Melpmp s e . .
A Dl = Pyrhy S=aKa' =FV KTFO = O g0 (48)
38
(38) Now, for a given geometry;, 71, ho we find a range foik.
and where fori = 1,2 i.e.,m/2h; <k.<m/2hy. We then seek solutions in this range
he from (32), where we note that the dimensigi?) of S and A

FO =@l b)) = Pl ()bm(y)dy  (39) changes depending dn. The matrixA is given by (31), and
0 S is calculated from (46)—(48) whetE) and K are given
R 1) by (44) and (45). Note that we have to uRetrial functions
Simn = Z“"”‘Fm ’ (40) for the approximation and that the infinite sums f&rhave
=t to be truncated. In Section IIl, we will show that we will only
It remains to choose an appropriate form of the functiofeed about five trial functions and truncate the infinite sums to
bm(y). Now b, (y) is related tow,,(y) by (36), which, in about 500 terms to achieve extremely accurate solutions with
turn, originates from the decomposition &{y) in (20). Itis at least six decimal places of accuracy.
easy to show from the singular behavior at the edge of theNow, for the TM modes, we follow a similar procedure
groove thatlU(y) ~ Ay~*/3 asy — hy, thus, in order to py again matchingp. and d¢./dz, but this time we define
correctly model the singularity at the edges of the guide We(y) = (h1h,)~L4.(a,y) instead of the partial derivative of
chooseb,,(y) as follows: ¢ in the z-direction. The behavior of/(y) at the edge of the
mal 1\, 1/6 groove changes from being singular to behaving likgy) ~
(1)t (2m — 1)!F(5)02’/"—1(y/h2) (41) Ay?/® asy — ha, so we choosé,,(y) to reflect this.ukl(:o)r the
(2h2)Y/3aT (2m — 3)(h3 — y?)/3 antisymmetric TM modes aboyt= 0 the main change is that

bm(y) =
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k. is now in the ranger/hy < k. <7 /hgo With M = [k:hy /7]
andQy,, = —if, = —i(kZ — 2)¥*n=1,2,---,M and

TABLE |
CONVERGENCE OFAg /A, WITH THE NUMBER OF TRIAL FUNCTIONS R FOR
V AROIUS GEOMETRIES AT A FREQUENCY OF 10 GHz. a)hs = 0.2 cm,

. a —'L} hl/h,2=57a/h2=6, b)h'_):[)é Cm,hl/hz:270,/}12:2.4,
A :dlag{w}, n=1--- (49) AND C) ho = 0.8 cm, by /ho = 1.25,a/hs = 1.5.
ILBlnhQ ALSO SHOWN ARE THE RESULTS BY SACHIDANANDA
; Jomt(1/6)(Ginh2) ) B 5
Ff =5 bm) = W? i=12 (50) D ) )
" 1 0.6532673 | 0.6142227 | 0.5903291
where b,,,(y) is now chosen to be 2 0.6532580 | 0.6142205 | 0.5901115
3 0.6532575 | 0.6142193 | 0.5901115
(=1)m+12%/3 (2m — DIT(E) 2/3 4 0.6532574 | 0.6142191 | 0.5901115
bin(y) = T T(@m+4/3) (hy —y7) 5 0.6532574 | 0.6142191 | 0.5901115
mhy Sachidananda | 0.65348 | 0.614928 | 0.590634
7/6 Y
: Can—l <h—> (51)
2 TABLE I
and CONVERGENCE OF/\Q//\Z WITH THE NUMBER OF TRIAL FUNCTIONS 12 FOR

= Q1rha
Krnn = Z A
e X(o Q)

Samt1/6)(@1rh2) Jang1/6) (q1rha)
(quoha)7/?

oo

n Z Qarh Jomi1/6)(q2rh2) J2nt(1/6)(q2rh2)

— ' (garh2)7/3

For the TM modes symmetric aboyt= 0, k. is now in the
rangen /2hy < k. <m/2he with M = [k.hi/7 + 1/2] and

P, = —iay, = —i(k2 = p2)Y? n=1,2,---, M and

(52)

A:diag{w} n=12-...M (53)

ialnhg

i e,s Jom—(5/6)(Pinh2)
Fl) =5, bm) = (p( ;12))7/6 )

mn in ?

where
(—=1)m+122/3 (2m — 2)IT(%)
mg/i"’ I'(2m+1/3)

7/6 Y
: 027/71—2 <h—2>

oo

P17wh2
Ko = Z D
vty Xlas i)

Jam—(5/6)(P1rh2) Jan—(5/6) (P1rh2)
(p1rh2)7/3

b (y) =

and

oo

(h3—y

i=1,2

)2/3

(54)

(55)

Jrn—{) rh Jn—5 1‘h
—i—ZPQ,,hl 2m—(5/6)(P2rh2) Jan—(5/6) (P2rh2)

r=1 (p27‘h2)7/3

I1l. RESULTS

(56)

VARIOUS GEOMETRIES AT A FREQUENCY OF20 GHz.h{/ho = 2, @)a = 0.2
cm,a/he = 0.4, b)a = 0.5 cm,a/hs =1 AND ) a = 0.8 cm,
a/h2 = 1.6. ALSO SHOWN ARE THE RESULTS BY SACHIDANANDA

R a) b) c)

0.8784795 | 0.9060491 | 0.9142251
0.8782891 | 0.9060452 | 0.9142242
0.8782870 | 0.9060446 | 0.9142238
0.8782866 | 0.9060445 | 0.9142238
0.8782865 | 0.9060445 | 0.9142238
Sachidananda | 0.878739 | 0.906235 | 0.914367

[ NI

trial functions (R = 5), solutions were obtained accurate
to about seven decimal places. In Tables | and Il, the ratio
Xo/A. = /1—KkZ/kZ is calculated showing how rapidly
the results converge foR for particular geometries. Also
shown in the last rows of Tables | and Il are the results
obtained by Sachidananda [9] using a three-domain mode-
matching technique showing that he was able to obtain two
or three decimal places of accuracy (depending on how you
round up or down). Although two or three decimal places are
adequate for most plots, we will see later in Figs. 6-8 that
a more accurate solution is required to differentiate between
higher order modes, which at first glance appear to cross each
other, but actually at closer inspection become very close (two
decimal places) before separating.

In Fig. 2, we have plotted\./4h(= w/2k.hy) against
ha/h1 whena/hy = 0.4 for the first TE mode (most dominant
M = 1) symmetric aboutr = 0 along with the first-order
theory of Nakahara and Kurauchi and Oliner's transverse
equivalent network results. We see that Oliner’s simple ap-
proximation is surprisingly accurate and that Nakahara and
Kurauchi’s results are not so good for large groove widths, but
for smaller widths &./h; = 0.7 to 1) their first-order theory
is reasonably accurate. Also plotted in Fig. 2 are results for the
small groove deptfih; /by — 1 <« 1) approximation derived
in the Appendix, and as we can see it is only accurate when
0.9 < ha/h1 < 1. Note that in order to simplify the plot, only
the most dominant mode is shown. In this case, the higher

Before computing the results, the number of terms for theder modes would start appearing whiery hy < 1/3.
truncation of infinite series fo¥(,,,, and the number of trial  In Fig. 3, we have plotted.. againsth, with h; = ho + 10
functionsR required to obtain accurate solutions are estimateim for the two cases (1) = 15 mm and (2)a = 5 mm. Also

It was found that using the first 500 terms fé&f,,,, for a plotted are the experimental results by Nakahara and Kurauchi
given R gave results accurate to seven or eight decimal placesd Oliner’s equivalent network results. As we can see, our
Using this truncation size, we found that just by using fivand Oliner’s results agree very well with the experimental data.
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Fig. 2. The first TE solution symmetric abaut= 0 with values ofA./4h againstha/hi, — our results, - - - smalko/hi — 1 approximation,
m Oliner's equivalent circuit results, and for Nakahara and Kurauchi's results fayh; = 0.4.
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Fig. 3. Comparison between measured and theoretical valuks afjainst
ho, — our results,- - - Oliner's equivalent circuit results, arid Nakahara
and Kurauchi’'s experimental results with = h2 +10 mm for the two cases
(1) a = 15 mm and (2)a = 5 mm.

In Fig. 4, we have plottedk.h, againsta/h, for the

TE modes whenk;/hy = 2. Evans and Linton [17] con-

were originally compared with their Fig. 8, but after checking
their results we found that they were computed incorrectly
(private communication with Linton) and thus, no comparison
could be made. Sincé/h, = 2 the range ofk.hy is
[w/4,7/2] and we can only have one wave-like mode (in the
z-direction, M = 1) in the groove region. Both symmetric
and antisymmetric solutions about = 0 are shown and
as a/hy increases we see more and more modes exist. We
can also see that the symmetric and antisymmetric modes
alternate (and never cross) with the most dominant being
the first symmetric mode. In fact, the first symmetric mode
aboutx = 0 is the most dominant for all TE and TM
solutions, as shown in Fig. 5. Here, results are plotted with
k.h2 againsta/h, for the symmetric about = 0 solutions
with k1 /he = 2 (only one wave-like mode in-direction) for
the three types of modes: TE (most dominant), TM symmetric
abouty = 0, and TM antisymmetric abouy = 0 (least
dominant). It is obvious that the first symmetric about the
y = 0 TM mode is least dominant since/h; < k. <w/hs,
but at first glance it is not so obvious whether the TE or
the symmetric abouyy = 0 TM mode is most dominant
since k.hs lies in the ranger/2hy < k. < w/2hs for both
modes. It is only by considering (35) and (49) where we seek
solutions of S1; = «y1hitanagia for the TE modes and
S11 = cot fr1a/Piia for the symmetric TM mode$M = 1)
that we find that the TE is in fact the most dominakt/( is
smallest) due to the behavior o6t and tan.

So far, we have presented results with only one wave-like

sidered an equivalent water wave problem and our resufite®de in thez-direction. Wherh, /2o > 3 for the TE solutions,
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Fig. 4. TE solutions for values of.ho againsta/ho with hi/hs = 2, — symmetric, - - - antisymmetric about = 0. Only one wave-like mode
in groove region(M = 1).

more wave-like modes in the-direction appeafM >1), as the curves of the cutoff wavenumbers become close at certain
shown in Fig. 6. Here, we have plottdglh, againsta/h, values ofa/h,. Here we find that we can have just one solution
where hy /hy = 6 for the case of symmetry about = 0. for the cutoff wavenumber for a givei/h, less than about
We first note that for any givea/h, there exist at least three0.6. Here, the most dominant cutoff wavenumber can have
values of the cutoff wavenumbéth,. In fact, for all the TE either one or two wave-like modes in thedirection, whereas

modes there exist at leadf,,,x solutions defined by the most dominant cutoff wavenumber for the TE solutions
only has one wave-like mode in thedirection. Note that by
kohy 1 using just single-mode theory/ = 1), one would conclude
M. — P = . . L
max 7r/2h11<rlle?)<(7r/2h2 { { T 2} } that no solution existed fat/h less than about 0.85. Similar

behavior is shown in Fig. 8 where we have plottéch,

againsta/hy with hy/he = 6 for the symmetric about = 0,

antisymmetric abouty = 0 TM solutions. Here we can have
Hvto three wave-like modes in thedirection and again the

where [x] denotes the integer part of As a/hs increases,

more solutions appear as seen before in Figs. 4 and 5, but

with multiple wave-like modes in the-direction the be_havior ost dominant cutoff wavenumber can have either one, two,

of the cutoff wavenumbers has bgc_o_me more complicated. Wey. o\ ave-like modes in thedirection.

also see that the curves plotted initially appear to cross each

other at approximately,/hy ~ 2.3, 3, 4.2, and5.2. A closer

inspection reveals that the curves do not cross, but undergo IV.- CONCLUSION

a rapid change of directionk{h, decreases monotonically In this paper, we have presented a full multimodal analysis

with increasinga/h2) (A similar behavior occurs in a not of an open-ended rectangular groove waveguide for all forms

entirely unrelated problem described by Dietz al. [18]). of TE and TM modes. The problem was formulated in terms

For example, at the point where the curves nearly toudf an integral-equation representation to which a Galerkin

afhy ~ 4.21,k.hy ~ 1.51 the curves are within 0.1% (3/4 approximation was applied using Gegenbauer polynomials as

places of accuracy) of each other demonstrating the accuraspansion functions which correctly model the field behavior

required in distinguishing between them. at the sharp edges of the guide. The method of solution not
For the TM modes, the behavior is slightly different. Ironly produced the most accurate results to date, but was

Fig. 7, we have plotted:.h, againsta/hy with hy/hs = 3 also formulated in such a way that all cutoff wavenumbers

for the symmetric about = 0, antisymmetric abouyy = 0 including the higher order modes could be calculated.

TM modes. For the cask; /h, = 3 we can have two wave- Results were presented demonstrating the accuracy of the

like modes in ther-direction and as with the previous figuremethod and comparison with Nakahara and Kurauchi's exper-
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Fig. 5. Symmetric about: = 0 solutions for values ofk.hs againsta/ho with hi/ho = 2. — TE, - - - - - symmetric TM, - - - antisymmetric
TM. For each case, only one wave-like mode in groove region.
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Fig. 6. Symmetric about = 0 TE solutions for values ok.hs againsta/ho with ki /ho = 6. Three wave-like modes in groove regiohf = 3).

imental data were made which show good agreement. Resuits less accurate formulation. Finally, a simple small groove
have been presented for the multimodal solutions that shaoepth approximation has been developed which appears to give
some remarkable behavior which might have been overlookadcurate results fok,/h; — 1< 0.2.
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Fig. 7. Symmetric about: = 0, antisymmetric abouty = 0 TM solutions for values ofk.h2 againsta/hs with hi/he = 3. Two wave-like
modes in groove regiofM = 2).

APPENDIX where
APPROXIMATION FORWHEN THE GROOVE DEPTH IS SMALL (2.1) 1 /°° _ sinh vy
Y) =5 e T
2

Consider the arbitrary symmetric groove. We will consider
the TE modes where we have the conditighs= 0 on the s eTIT 1\ 7y
walls of the grooveg = 0 on the centerlindy = 0),¢ — 0 => (-t o sin <” - §>h_2 (A.5)
as |z — oo, and we look for solutions of the Helmholtz n=l1
equation(V2 + k?)¢ = 0. The shape of the wall is defined byafter we have integrated using residue calculus and where we
y = ha + ef(z) (e small) wheref(—z) = f(z), f(z) > 0 for have definedy,, = ((n—1/2)?r2/h} —k2)'/2. The remaining

|z| < a and f(x) = 0 for |z|> a. condition to be satisfied i¢,, = 0 ony = hs + ¢f(z) which
Now, taking the Fourier transform (FT) of the Helmholtzan be written as
Squation gives y(x,y) = cf (@)¢palw,y) ON y=hy+ef(x). (AB)
<d_2 _ 72>(I)(a y) =0 4= o? — k2 (A1) Now expanding abouy = hs using Taylor series we obtain
2 ? - - c .
i by (2 h2) + €f(@)yy (2. h2) = ef (2)pa(, ha) + O()
where ¢(z, ) is recovered from the inverse FT by (A7)
1 [ ‘ and so ignoring terms of ordef or greater, we obtain after
Hlx,y) = %/ O(cr, y)e " da. (A.2) substitutinge from (A.4)
_ !
The solution of (A.1) satisfying the boundary condition Py, D) _6{f (=) . ¢y(t ha) Moz — t, ha) dt
O(c,0) = ¢(x,0) = 0 is given by a
| sl . — f(=z) by(t, hQ)Myy(a:—t,hQ)dt}.
s vy iat —a
= —— : A.
Yay) = e | dthetd (A (A8)

i Let ¢,4; — 0 such thate/y; = O(1). As v; — 0 the most
where we have used the FT @f (z,y) aty = ho. Now taking  gominant term in (A.5) can be shown to Bé,,(z — ¢, ha),
the inverse FT of (A.3), we obtain namely

a

1 2
dr) = [ ot hM@—ty)di (Ad) My = th) ~ = <2ih2) (A.9)
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Fig. 8. Symmetric about: = 0, antisymmetric abouy = 0 TM solutions for values ofk.ho againsta/hs with hi/ho = 6. Three wave-like
modes in groove regiofM = 3).
and so ax,y; — O hi/hs — 1. These results agree with results contained in a
recent paper of Bull@t al. [19] using functional analysis.
2 a
ef(x) (=
Gy(z, ho) ~ ———= <—> / Pyt ha)dt.  (A.10) REFERENCES
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