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Full Multimodal Analysis of an Open
Rectangular Groove Waveguide

Mark Fernyhough and David V. Evans

Abstract—In this paper, a full multimodal analysis of an open
rectangular-shaped groove waveguide is presented for both TE
and TM modes. The method of solution involves the formulation
of the problem in terms of an integral-equation representation
to which a Galerkin approximation, which incorporates the
anticipated singularities at the edges of the guide, is then applied.
The method proves to be extremely accurate and numerically
efficient to compute, and results are presented for both the lower
and higher order modes.

Index Terms—Groove guide, microwaves, multimodal.

I. INTRODUCTION

T HE GROOVE waveguide was first considered by Tischer
[1] for use at millimeter wavelengths as an alternative

to classical waveguides such as the H-guide and the rect-
angular guide. It has many advantages such as low-loss low
dimensional tolerance and the ability to handle higher power
capacities at high frequencies. Most of these properties are
attributed to the open endedness of the guide, which reduces
wall losses. The grooves in the guide trap the fields locally and
prevent radiation leaking out along the open parts of the guide.

Many authors have studied the groove guide both experi-
mentally and analytically. Conformal mapping techniques have
been used by Tischer [1], Bava and Perona [2], and Choiet
al. [3]. The mapping of the region enclosed by the groove
guide into the region between two parallel planes results in a
Helmholtz equation with the space-varying wavenumber cor-
responding to an anisotropic medium for which approximate
methods need to be employed. Thus, Bava and Perona chose
the shape of the groove to make analysis easier, from which
approximate values of the cutoff wavelengths were obtained
using a stationary expression for the cutoff wavenumber. A
different approach was used for the rectangular groove guide
by Nakahara and Kurauchi [4], [5] who presented both theory
and experimental results. They were able to obtain first-order
results by using only the dominant mode in each region
of the groove to produce a dispersion equation. Although
their analysis was approximate, the results obtained gave
fair agreement with their carefully measured experimental
results. Subsequently, Oliner and Lampariello [6] using a new
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Fig. 1. Cross section of groove guide.

transverse equivalent network formulation for the rectangular
groove guide were able to provide a simple dispersion relation
for the properties of the dominant mode. Even though the
results are approximate (the susceptance is assumed to be
constant) the dispersion relation was in an extremely simple
form, and when compared to experimental data produced much
more accurate results than previous methods. Mahmoud [7],
[8] employed an approximate mode-matching scheme to the
problem, which used the full solution in the groove region, but
only a simple modal expression for the open-ended region.
He was able to manipulate the resulting dispersion relation
into a form analogous to that of Oliner and Lampariello in
which the value of the susceptance was dependent upon the
geometry of the guide and was not constant, as assumed by
Oliner and Lampariello. The most accurate solutions to date
are by Sachidananda [9] who analyzed the groove guide using
a mode-matching technique employing three domains in place
of the two domains used conventionally. The method, which
is accurate to about two or three places of accuracy after
truncation of the resulting infinite system of equations, only
applies to the dominant TE mode. Other important work in
this area is due to Ma, Yamashita, and Xu [10], and Ma and
Yamashita [11], [12]. In [10], they consider arbitrary groove
profiles, and in [11] and [12], leaky-wave characteristics are
studied due to the insertion of a strip into the rectangular
groove waveguide.

In this paper, we present the full multimodal solutions for
the rectangular groove waveguide, where we allow more than
one wave-like mode trapped locally around the groove region.
In total, there are six types of solutions to this problem due
to the symmetry of the guide (see Fig. 1), consisting of two
TE solutions antisymmetric about (symmetric and
antisymmetric about ) and four sets of TM solutions
exploiting all combinations of the symmetries about
and .
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In Section II, the problem is formulated in terms of an
integral equation, and instead of seeking an exact solution, a
Galerkin approximation is used in which expansion functions
are chosen to model the behavior at the end points of the
integral corresponding to the edges of the rectangular groove,
and also chosen to provide maximum simplification of the
results. The same method has been employed in similar
problems (e.g., [13], [14]). Although the method of solution
at first glance appears to be mathematically complex, the final
form is simple and the problem is reduced to finding zeros of
a determinant corresponding to values of the cutoff frequency.
The method turns out to be extremely efficient with no more
than five expansion functions needed to give results to at least
six-figure accuracy. In fact, as we increase the number of
expansion functions, the results converge extremely rapidly.

In Section III, results are presented showing the conver-
gence of the ratio of free-space wavelength to guide wave-
length compared with Sachidananda’s [9] three domain mode-
matching solution. Oliner’s [6] transverse equivalent network
and Nakahara and Kurauchi’s [4], [5] first-order theory and
experiments are also compared. Results are also presented for
various TE- and TM-mode solutions including geometries of
the groove guide where multiple cutoff frequencies exist, and
an approximation for arbitrarily shaped groove guides (derived
in the Appendix) is used for comparison when the groove
width is small.

II. FORMULATION AND SOLUTION

Cartesian coordinates are chosen and the dimensions of the
groove guide are illustrated in Fig. 1, with the-axis measured
into the page. We assume that the solutions of Maxwell’s
equations are time-harmonic with angular frequencyand
that the motion in the -direction along the groove guide is
periodic with wavenumber. We seek solutions for the electric
and magnetic Hertzian potentials (corresponding to TM and
TE solutions, respectively). In an obvious notation, we write

(1)

where, within the interior of the waveguide, satisfies

(2)

and on the walls of the waveguide

(3)

Also, we require that the guided waves are contained locally
around the recessive groove in the waveguide and, thus,
require that satisfy the radiation condition

as (4)

Here, is the unit vector in the-direction and
is the cutoff wavenumber with the free-space
wavenumber and the speed of light. The electric- and
magnetic-field vectors can be related to either the electric or
magnetic Hertzian potentials (see [15]) by

(5)

for the TM solution or for the TE solution

(6)

Here, and are the permeability and permittivity,
respectively, of free space. Note from Fig. 1 that the geometry
has two lines of symmetry, namely at and , so
we only need to consider the quadrant with
the appropriate symmetry conditions at and .
For both the TE and TM modes there exists symmetric and
antisymmetric solutions about , but for the symmetry
about there is only an antisymmetric set of TE modes
satisfying (4) (the symmetric about set of TE modes
always have traveling wave solutions as ) while both
symmetric and antisymmetric solutions exist about for
the TM modes. Thus, in total there exists six sets of solutions
to this problem.

We now split the region into two (see Fig. 1). Region (1) is
defined by while region (2) is given by

. The general form of solutions in regions
(1) and (2) for the TE modes antisymmetric about are

(7)

and

(8)

Similarly, for the antisymmetric TM modes about , the
general solutions in regions (1) and (2) are

(9)

(10)

and for the TM modes symmetric about

(11)

(12)

Here, are as yet unknown and we have defined

for
symmetric

anti-symmetric
(13)

solutions about , where we assumeis a constant, thus

(14)

The eigenfunctions are defined for by

(15)
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where for

(16)

and (15) are orthogonal in the sense that

(17)

Finally, for

(18)

Returning to (8), (10), (12), (16), and (18) we see that in order
for (4) to be satisfied we choose for the antisym-
metric TE mode while for the antisymmetric and symmetric
TM modes and , respectively.

We will only consider the analysis for antisymmetric TE
solutions, as the method is similar for the TM solutions for
which changes will be outlined later.

The general solutions for regions (1) and (2) need to be
matched at their common boundary . Continuity of

at gives

(19)

where has been introduced. Using the orthogonality of
from (17) we find

(20)

where we have used the fact that .
Continuity of for now requires

(21)

Substituting (20) into (21) we find

(22)

Let us now multiply (22) by and integrate over
to obtain

(23)

We see from (23) that if is real and positive (i.e.,
) then the kernel of (22) is positive definite and,

thus, the only solution is . We, therefore, require

for a guided wave solution. Now, is in
the range , so depending on it is
possible to have more than one wave-like mode in the groove
region where a particular satisfies

, where . Here, denotes
the integer part of . Thus, we can write

and (22) can be written as

(24)

where for

(25)

and

(26)

Let us now define to satisfy

(27)

where, from (24) and (25), we see that

(28)

where

(29)

It is convenient to write (28) in the matrix form

(30)

where for

(31)

Then the condition corresponding to a guided wave is that (30)
has a nontrivial solution or in the matrix form

(32)

We now write (27) and (29) in an obvious operator notation

(33)

and

(34)

Now ,
since , so is a symmetric
matrix. Rather than solve (33) and (34) directly, we seek an



100 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 1, JANUARY 1998

approximation such that
where the approximation to is .
Due to the positive definiteness of it is possible to show
that the approximation provides lower bounds on , i.e.,

as in, for example, [13] and [14].
The procedure for solution now follows. We know that

is in the range with the possibility of
modes, which is dependent on . Thus, for a fixed

geometry we can determine the range of and also the
number of modes associated at a particular value of. For
example. we can show that for and
thus, (32) reduces to solving

(35)

Note from (13) that the right-hand side of (35) becomes
or corresponding to the sym-

metric and antisymmetric solutions about , respectively.
Note that depending on or and because of the
periodic nature of and we can have multiple solutions
of to (32) or (35).

We must first solve (27) or (33) and then determine
from (29) or (34). We use an accurate Galerkin approximation
which has proved successful in related problems [13], [14]. We
begin by expanding in a set of functions such that

(36)

and substitute in (27), multiply by and integrate over
, to obtain for

(37)

where

(38)

and where for

(39)

(40)

It remains to choose an appropriate form of the function
. Now is related to by (36), which, in

turn, originates from the decomposition of in (20). It is
easy to show from the singular behavior at the edge of the
groove that as , thus, in order to
correctly model the singularity at the edges of the guide we
choose as follows:

(41)

where are ultraspherical Gegenbauer polynomials sat-
isfying

(42)

(43)

See, for example, [16, p. 38]. Note that this choice of polyno-
mial has a rather curious combination of factors in (41), but as
we will see later [(44), (45)] is solely to achieve simplification
of the final results.

It follows that

(44)

Thus

(45)

Note that it is not necessary to solve for the. In an obvious
matrix notation, we have from (37)

(46)

and

(47)

where

(48)

Now, for a given geometry , , we find a range for
i.e., . We then seek solutions in this range
from (32), where we note that the dimension of and
changes depending on. The matrix is given by (31), and

is calculated from (46)–(48) where and are given
by (44) and (45). Note that we have to usetrial functions
for the approximation and that the infinite sums for have
to be truncated. In Section III, we will show that we will only
need about five trial functions and truncate the infinite sums to
about 500 terms to achieve extremely accurate solutions with
at least six decimal places of accuracy.

Now, for the TM modes, we follow a similar procedure
by again matching and , but this time we define

instead of the partial derivative of
in the -direction. The behavior of at the edge of the

groove changes from being singular to behaving like
as , so we choose to reflect this. For the

antisymmetric TM modes about the main change is that
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is now in the range with
and and

(49)

(50)

where is now chosen to be

(51)

and

(52)

For the TM modes symmetric about , is now in the
range with and

and

(53)

(54)

where

(55)

and

(56)

III. RESULTS

Before computing the results, the number of terms for the
truncation of infinite series for and the number of trial
functions required to obtain accurate solutions are estimated.
It was found that using the first 500 terms for for a
given gave results accurate to seven or eight decimal places.
Using this truncation size, we found that just by using five

TABLE I
CONVERGENCE OF�0=�z WITH THE NUMBER OF TRIAL FUNCTIONS R FOR

VAROIUS GEOMETRIES AT A FREQUENCY OF10 GHz. a)h2 = 0:2 cm,
h1=h2 = 5; a=h2 = 6, b) h2 = 0:5 cm, h1=h2 = 2; a=h2 = 2:4,

AND c) h2 = 0:8 cm, h1=h2 = 1:25; a=h2 = 1:5.
ALSO SHOWN ARE THE RESULTS BY SACHIDANANDA

TABLE II
CONVERGENCE OF�0=�z WITH THE NUMBER OF TRIAL FUNCTIONS R FOR

VARIOUS GEOMETRIES AT A FREQUENCY OF20 GHz.h1=h2 = 2, a) a = 0:2
cm, a=h2 = 0:4; b) a = 0:5 cm, a=h2 = 1 AND c) a = 0:8 cm,
a=h2 = 1:6. ALSO SHOWN ARE THE RESULTS BY SACHIDANANDA

trial functions , solutions were obtained accurate
to about seven decimal places. In Tables I and II, the ratio

is calculated showing how rapidly
the results converge for for particular geometries. Also
shown in the last rows of Tables I and II are the results
obtained by Sachidananda [9] using a three-domain mode-
matching technique showing that he was able to obtain two
or three decimal places of accuracy (depending on how you
round up or down). Although two or three decimal places are
adequate for most plots, we will see later in Figs. 6–8 that
a more accurate solution is required to differentiate between
higher order modes, which at first glance appear to cross each
other, but actually at closer inspection become very close (two
decimal places) before separating.

In Fig. 2, we have plotted against
when for the first TE mode (most dominant
) symmetric about along with the first-order

theory of Nakahara and Kurauchi and Oliner’s transverse
equivalent network results. We see that Oliner’s simple ap-
proximation is surprisingly accurate and that Nakahara and
Kurauchi’s results are not so good for large groove widths, but
for smaller widths ( to ) their first-order theory
is reasonably accurate. Also plotted in Fig. 2 are results for the
small groove depth approximation derived
in the Appendix, and as we can see it is only accurate when

. Note that in order to simplify the plot, only
the most dominant mode is shown. In this case, the higher
order modes would start appearing when .

In Fig. 3, we have plotted against with
mm for the two cases (1) mm and (2) mm. Also
plotted are the experimental results by Nakahara and Kurauchi
and Oliner’s equivalent network results. As we can see, our
and Oliner’s results agree very well with the experimental data.
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Fig. 2. The first TE solution symmetric aboutx = 0 with values of�c=4h1 againsth2=h1; — our results, - - - smallh2=h1 � 1 approximation,
Oliner’s equivalent circuit results, and_ for Nakahara and Kurauchi’s results fora=h1 = 0:4.

Fig. 3. Comparison between measured and theoretical values of�c against
h2; — our results,- - - Oliner’s equivalent circuit results, and_ Nakahara
and Kurauchi’s experimental results withh1 = h2+10 mm for the two cases
(1) a = 15 mm and (2)a = 5 mm.

In Fig. 4, we have plotted against for the
TE modes when . Evans and Linton [17] con-
sidered an equivalent water wave problem and our results

were originally compared with their Fig. 8, but after checking
their results we found that they were computed incorrectly
(private communication with Linton) and thus, no comparison
could be made. Since the range of is

and we can only have one wave-like mode (in the
-direction, ) in the groove region. Both symmetric

and antisymmetric solutions about are shown and
as increases we see more and more modes exist. We
can also see that the symmetric and antisymmetric modes
alternate (and never cross) with the most dominant being
the first symmetric mode. In fact, the first symmetric mode
about is the most dominant for all TE and TM
solutions, as shown in Fig. 5. Here, results are plotted with

against for the symmetric about solutions
with (only one wave-like mode in-direction) for
the three types of modes: TE (most dominant), TM symmetric
about , and TM antisymmetric about (least
dominant). It is obvious that the first symmetric about the

TM mode is least dominant since ,
but at first glance it is not so obvious whether the TE or
the symmetric about TM mode is most dominant
since lies in the range for both
modes. It is only by considering (35) and (49) where we seek
solutions of for the TE modes and

for the symmetric TM modes
that we find that the TE is in fact the most dominant ( is
smallest) due to the behavior of and .

So far, we have presented results with only one wave-like
mode in the -direction. When for the TE solutions,
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Fig. 4. TE solutions for values ofkch2 againsta=h2 with h1=h2 = 2; — symmetric, - - - antisymmetric aboutx = 0. Only one wave-like mode
in groove region(M = 1).

more wave-like modes in the-direction appear , as
shown in Fig. 6. Here, we have plotted against
where for the case of symmetry about .
We first note that for any given there exist at least three
values of the cutoff wavenumber . In fact, for all the TE
modes there exist at least solutions defined by

where denotes the integer part of. As increases,
more solutions appear as seen before in Figs. 4 and 5, but now
with multiple wave-like modes in the-direction the behavior
of the cutoff wavenumbers has become more complicated. We
also see that the curves plotted initially appear to cross each
other at approximately , , , and . A closer
inspection reveals that the curves do not cross, but undergo
a rapid change of direction ( decreases monotonically
with increasing ) (A similar behavior occurs in a not
entirely unrelated problem described by Dietzet al. [18]).
For example, at the point where the curves nearly touch

the curves are within 0.1% (3/4
places of accuracy) of each other demonstrating the accuracy
required in distinguishing between them.

For the TM modes, the behavior is slightly different. In
Fig. 7, we have plotted against with
for the symmetric about , antisymmetric about
TM modes. For the case we can have two wave-
like modes in the -direction and as with the previous figure

the curves of the cutoff wavenumbers become close at certain
values of . Here we find that we can have just one solution
for the cutoff wavenumber for a given less than about
0.6. Here, the most dominant cutoff wavenumber can have
either one or two wave-like modes in the-direction, whereas
the most dominant cutoff wavenumber for the TE solutions
only has one wave-like mode in the-direction. Note that by
using just single-mode theory , one would conclude
that no solution existed for less than about 0.85. Similar
behavior is shown in Fig. 8 where we have plotted
against with for the symmetric about ,
antisymmetric about TM solutions. Here we can have
up to three wave-like modes in the-direction and again the
most dominant cutoff wavenumber can have either one, two,
or three wave-like modes in the-direction.

IV. CONCLUSION

In this paper, we have presented a full multimodal analysis
of an open-ended rectangular groove waveguide for all forms
of TE and TM modes. The problem was formulated in terms
of an integral-equation representation to which a Galerkin
approximation was applied using Gegenbauer polynomials as
expansion functions which correctly model the field behavior
at the sharp edges of the guide. The method of solution not
only produced the most accurate results to date, but was
also formulated in such a way that all cutoff wavenumbers
including the higher order modes could be calculated.

Results were presented demonstrating the accuracy of the
method and comparison with Nakahara and Kurauchi’s exper-
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Fig. 5. Symmetric aboutx = 0 solutions for values ofkch2 againsta=h2 with h1=h2 = 2: — TE, - - - - - symmetric TM, - - - antisymmetric
TM. For each case, only one wave-like mode in groove region.

Fig. 6. Symmetric aboutx = 0 TE solutions for values ofkch2 againsta=h2 with h1=h2 = 6: Three wave-like modes in groove region(M = 3).

imental data were made which show good agreement. Results
have been presented for the multimodal solutions that show
some remarkable behavior which might have been overlooked

in a less accurate formulation. Finally, a simple small groove
depth approximation has been developed which appears to give
accurate results for .
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Fig. 7. Symmetric aboutx = 0, antisymmetric abouty = 0 TM solutions for values ofkch2 againsta=h2 with h1=h2 = 3. Two wave-like
modes in groove region(M = 2).

APPENDIX

APPROXIMATION FORWHEN THE GROOVE DEPTH IS SMALL

Consider the arbitrary symmetric groove. We will consider
the TE modes where we have the conditions on the
walls of the groove, on the centerline
as , and we look for solutions of the Helmholtz
equation . The shape of the wall is defined by

( small) where for
and for .

Now, taking the Fourier transform (FT) of the Helmholtz
equation gives

(A.1)

where is recovered from the inverse FT by

(A.2)

The solution of (A.1) satisfying the boundary condition
is given by

(A.3)

where we have used the FT of at . Now taking
the inverse FT of (A.3), we obtain

(A.4)

where

(A.5)

after we have integrated using residue calculus and where we
have defined . The remaining
condition to be satisfied is on which
can be written as

on (A.6)

Now expanding about using Taylor series we obtain

(A.7)

and so ignoring terms of order or greater, we obtain after
substituting from (A.4)

(A.8)

Let such that . As the most
dominant term in (A.5) can be shown to be ,
namely

(A.9)
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Fig. 8. Symmetric aboutx = 0, antisymmetric abouty = 0 TM solutions for values ofkch2 againsta=h2 with h1=h2 = 6. Three wave-like
modes in groove region(M = 3).

and so as

(A.10)

Integrating with respect to over and canceling we
find

(A.11)

where is the area of the groove region or

(A.12)

For the rectangular groove, and thus, (A.11)
becomes for small

(A.13)

Following a similar procedure for the TM modes antisym-
metric about for the rectangular groove guide we
find

(A.14)

and for the TM modes symmetric about we obtain
the same approximation of the TE modes (A.13) for small

. These results agree with results contained in a
recent paper of Bullaet al. [19] using functional analysis.
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